ORVR燃油系统设计及验证要求

Contents

- Importance
- Work principle
- Refueling elements and components
- Design of fill pipes
- Issues, characterization and references
- Learning from experience
- Key Points
- Type VII ORVR (filling) emission

- Direct impact on the final customer satisfaction;
- No premature shut-offs
- No spit-backs
- Potential for improved comfort, for instance capless system
- Compliance with regulations, especially in the US
- Large portion of development cost associated to refueling within Inergy:
- High cost of development: from 400 hours (when not responsible) up to 5000 lab hours
- High differences from system to system
- Large proportion of lab test failures are related to fill quality issues

- Describe typical ORVR and RVR (RVR=Refueling Vapor Recovery by gas station) architectures
- Covering gasoline and Diesel
- Concentrate here on the function
 - Physical characteristics of refueling ; applies to both plastic and metal pipes
 - Refer to specific processing trainings as regards manufacturing

- Refueling basics
- Refueling and hydrocarbon emissions
- Typical configurations
- Innovative refueling concepts

- To fill a certain fuel volume, corresponding at most to the capacity of the fuel system, while ensuring:
- The evacuation of air and fuel vapor
- The automatic shut off of the fuel nozzle
- Main constraints:
- Vehicle environment
- Regulations
 - Compatibility with multiple nozzle designs
 - Evaporative emissions (vapor generation, permeation)
- « Round-off » capability
- Proper sealing of filler pipe with cap after refueling
- 360° nozzle position
- How does it work ?
- Example of European / Asian architectures

Refueling flows

HC = Hydrocarbon

Typical value of $[Q2]_{HC}/Q1 = 1.3$ gHC/liter of entering fuel (from 0.9 with mechanical seals to 1.8 in case of high turbulence and depending upon fuel/temperature)

- Possible issues:
- Premature shut off
- Spit-back
- Overfilling prevention
- o Acceptable fill quality with respect to
 - Fuel type
 - Fuel quality (RVP)
 - Fuel and tank temperatures
 - Fill flow rates

- Refueling basics
- Refueling and hydrocarbon emissions
- Typical configurations
- Innovative refueling concepts

- Regulations in 2 stages
- Vapor recovery Stage 1 pertains to recapturing vapors during refueling of gas stations from tank vehicles
 - Not relevant for fuel system design
- Vapor recovery Stage 2 specifies ways of limiting hydrocarbon emissions during refueling of vehicles from gas stations
 - Impact on fuel system

- Stage II aims at limiting hydrocarbons emissions during refueling from gas stations to vehicles
- Due to the refueling operation, fuel vapor can escape
- from the station venting system, due to the introduction of air or lean vapor in the station tank and fuel vapor pressure coming back to equilibrium
 - Typically 1 g/liter of fuel when air is sucked in gas station tank

➔ Reduction thanks RVR (~0 g/l), condensation, membrane separation

- from the fuel system (mostly through fill head) due to
 - Vapor displaced by the liquid fuel entering the vehicle tank
 - Vapor generated during refueling

→ Passive or active recovery (RVR) in gas station, or ORVR (on board of vehicle)

- Still used in US, but disappearing (replaced by ORVR); also in Korea and China
- Efficiency limited in practice due to the effort required on nozzle

- Deployed (since 1992) in some European countries, under deployment in others
- Efficiency : ≥ 85% (average on 8 vehicle types required in Germany)

- On-board Refueling Vapor Recovery (ORVR)
- Adsorption of vapor generated during refueling in large carbon canister

- Widespread in US
- Efficiency > 95% (limit at 0.2 g/gal = 0.053 g/l) but does not contribute to reduction of the emission from the gas station venting system

ORVR systems are incompatible with Phase II dispensing

- ORVR introduced in 1998.
- 100% of US vehicles include ORVR since 2000
- ORVR systems included on over 55% fleet miles
- ORVR refueling in stage 2 equipped stations adds excess venting emissions to environment.
- California requires dispensing stations to install controls and separator tank to prevent excess emissions

- Refueling basics
- Refueling and hydrocarbon emissions
- Typical configurations
- Innovative refueling concepts

Typical configurations

- Europe:
- Gasoline RVR system
- o Diesel
- US
- Gasoline ORVR system
 - ASIA
- Gasoline RVR system (very similar to Europe)
 - RVR = Refueling vapor recovery (through nozzle)
 - ORVR = On-board refueling vapor recovery

- Phase n°1:
- Important vapor generation 0
- High pressure level in case of 0 filled syphon

Phase n°2: Stabilized conditions

- Phase n°3:
- Vapor line closed by fuel level
- Pressure increase in the tank (backpressure)
- Fuel ascent in the filler pipe and in the vapor line
- Shut-off (as the fuel level reaches the nozzle)

- Often imposed by vehicle architecture
- At start of refueling,
- pressure build-up due to increased pressure drop (vapor bubbles through fuel);
- can cause PSO if pressure build-up is sufficient to increase fuel level in filler pipe up to nozzle
 - Liquid fuel is pushed in liquid vapor separator
 - Ways to reduce syphon impact
- Separator as low as possible
- Float valve protection
- Reduce syphon volume

Physical properties

	Diesel	Gasoline
Kinematic viscosity (centistoke = 10 ⁻⁶ m ² /s)	3	0.5
Specific mass (kg/m ³)	830	740
Vapor pressure at 37.8°C (kPa/ <i>psi</i>)	< 7 kPa < 1 psi	48-103 kPa <i>7-15 psi</i>

- Larger diameter of nozzle
 - (\geq 23.6 mm for diesel & \leq 21.3 mm for fuel)
- Higher flow rates

- Foam provoked by Diesel fuel; possible issues:
- Diesel foam can come out of filler pipe without provoking shut-off)
- Specific foaming issue with high flow rate nozzles (trucks)
- Foam can also lead to premature shut-off due to bubble entrainment in filling vapor line
- Consequences as regards tuning
- Fill level can differ by 3 liters (5-6% of rated capacity) depending on foam generated by Diesel fuel
- Problem to restart the filling with low diameter filler-pipe (25 mm)
- Consequences as regards design
- Shorter refueling vapor line nipple with Diesel due to the presence of foam
- Large diameter for the filler-pipe (>30mm)
- Large diameter for the breathing line
- Larger diameter for the filler-head guide

- On Board Refueling Vapor Recovery
 All the vapors displaced and generated during refueling have to be stored on board:
- Maximum allowed emission: 0.053 g/l of fuel added (0.2 g/gal) (in standard configuration, typical emissions are between 1 and 1.5 g/l)
 - For flow rates from 4 to 10 gal/min (15 to 38 l/min)
 - Impact on design
- Typical requirement given by OEMs: 0.04 g/gal to 0.10 g/gal, with sometimes restrictions on canister loads (1.2 g/l)
 - Leak Detection (OBD)
 - Recirculation line to have communication between filler head and vapor dome

Refueling of ORVR Systems

ORVR SHED testing

- Refueling emissions are measured in an ORVR SHED
- ORVR SHED accommodates vehicle refueling through the wall
- Hydrocarbons escaping the vehicle are contained in the sealed SHED. The concentration is measured with a FID.

Fuel dispensing cart

Refueling nozzle through the SHED wall—booted for operator arm (not vapor recovery)

^{(37.8} lpm)

Note: for EPA, total emission = 1 shut off + 1 minute

Evolution of pressure during refueling (ORVR system)

Function	ORVR architecture	RVR architecture	
Guide the fuel into the tank	Liquid seal , small diameter (inner diameter of 25 mm)	Large diameter (inner diameter of 35 to 45 mm)	
Relieve the vapor during refueling	Into a large canister (1.8 to 4.5 l) with specific charcoal Recirculation line optional (reduction of canister load)	Into the atmosphere at the filler head thru breathing line Liquid trap management by liquid –vapor separator	
Over Filling Prevention	Venting usually closed during refueling except FLVV Fuel closes the FLVV at the end of refueling, pressure increases in the tank, fuel rises in the filler pipe to reach the nozzle edge	Venting usually closed during refueling Fuel closes the breathing line at the end of refueling, pressure increases in the tank, fuel rises in the filler pipe to reach the nozzle edge.	
Safety	Tank tightness: ROV & ICV Leak detection: OBD II	System tightness: ROV Measure to avoid running without cap (link between chassis and cap, keys blocked on when open)	
HC recovery (legislation)	Limited emissions during refueling : ORVR (Max 0.2 g/gal or 0.053 g/l) RVR stage II still in use	RVR stage II (in some countries / stations) Small canister (0.7 to 1.2 l) used for venting flow only	

- Filler pipe design must not allow vapor to escape during filling
- Liquid seal with typical pipe internal diameter of 25 mm
- Alternatively mechanical seal
 - ORVR control valve (FLVV) must allow the vapor to exit the tank and control the fuel shut off level
 - Vent line to the canister must allow vapor flow with minimum pressure drop
 - Recirculation used to reduce canister loading (reduction of air entrainment and vapor generation) and/or for OBD

- Canister must be larger to hold all HC from filling and have low restriction
- Roll over/crash protection
- Venting system must be leak tight (FLVV + ROVs)
- Required by some customers in case of filler pipe rupture
 - Sealed Internal Check Valve is required inside the filler neck
- 3 typical ORVR architectures
- Standard: the most widespread
- With 3-way nipple: more and more used
- Without recirculation line: seldom

- Functions ensured by 3-way nipple
- Connection between filler pipe, line from FLVV and line to canister
- Recirculation of air in the filler pipe > the recirculation ratio can be adjusted by the size of the hole(s) and the umbrella valve
- OBD diagnostic: hole ≥ Ø2mm

ORVR architectures – Pros / Cons

Criteria	Standard	3-way nipple	No recirculation line
Canister loading	+	+	-
Compatibility with RVR architecture	-	+	-
OBD	+	+	-
Projects (examples)	GM Epsilon 2; BMW PL2	BMW E88 BMW PL6; Audi D4	Porsche C2/C4; Mercedes A/B Class

- Architectures with 3-way nipple are more and more used in Europe:
- Architecture standardization + components prices
- Be careful about ECE canister loading during refueling (BMW, Porsche)
- → pressure drop between nipple and canister thanks to additional valve or restriction
 - Architectures without recirculation lines often due to insufficient place in car environment